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Figure 1: A simple inheritance hierarchy.

1 Introduction

Inheritance reasoning is ubiquitous. Hierarchies provide a concise encoding of much of our comr-

monsense knowledge. They appear in various guises in the literature of artificial intelligence, but
also throughout the various arts and sciences. Open nearly any textbook, and some hierarchy is

likely to appear.
Reasoning with inheritance hierarchies is of particular interest to the artificial intelligence com-

munity because hierarchies are not only useful and native to human reasoning, but also simple and
often tractable. The simplicity of the "inheritance problem" makes it attractive as a topic that can
be considered in its entirety; its tractability makes it practical for the implementation of knowledge
representation systems.

In this paper, we present several equivalent formulations of inheritance reasoning. Each ap-
proach may be useful in a particular context; by demonstrating their equivalence, we show that
the most appropriate definition may be chosen. The techniques that we develop here generalize to
a broad class of existing systems, providing a unified foundation for inheritance theory and a basis
for comparative analysis, as well as extending previous results.

We begin, in section 2, by providing an intuitive description of what we intend by inheritance
reasoning. We view inheritance hierarchies as representing primitive assertions in the knowledge
base of some reasoning agent, and the inheritance problem as that of determining the agent's
derived beliefs. The work in the remainder of this paper builds on this foundation.

In section 3, we give a formal path-based definition of inheritance. A path-based inheritance
theory gives rules describing the admissible conclusions of a hierarchy. The theory presented here
combines rules concerning the transitivity of primitive assertions with an ambiguity-resolution
criterion to be invoked when two paths conflict. We describe the transitivity component by the
notion of reachability; the resolution criterion is captured by specificity.

In section 4, we describe a model-theoretic semantics for inheritance hierarchies. A hierarchy
defines a space of possible world-states--credulous extensions--or unambiguous interpretations.

Specificity induces a preference relation over these world-states. In the resulting preferential se-
mantics, each world-state has a classical model-theoretic interpretation, and the interpretation of

an inheritance hierarchy is the set of models of preferred world-states. We demonstrate that the
path-based theory of section 3 is sound and complete with respect to this model theory.

The model-theoretic semantics that we describe in section 4 differs from previous semantics for
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inheritance hierarchies by separating the model preference criterion-specificity-from the semantic
space. The language of credulous extensions is a common basis for the semantics of inheritance
systems. By varying the definition of specificity-selecting different sets of preferred extensions-
we obtain model-theoretic semantics for diverse inheritance theories. We present an alternate
specificity criterion in section 8.

Section 5 describes a tractable algorithm for computing the inferences supported by an in-
heritance hierarchy. This is the first tractable theory for credulous inheritance-reasoning about
what might be. Previous tractable inheritance theories have been limited to skeptical reasoning-
computing what must be-or to an otherwise limited subset of the credulous conclusions.

In section 6, we present a reason maintenance labeling scheme for inheritance reasoners. We
label each node of the hierarchy with a propositional formula corresponding to the conditions
under which the associated inference-a is- or is-not-a z-holds. These labels keep track of all of
the possible (or preferred) interpretations of an inheritance hierarchy simultaneously, allowing us
to draw contingent conclusions and reason about the interrelatedness of inferences.

In section 7, we use the reason maintenance labeling to define and investigate the problem of
ideally skeptical inheritance-computing the intersection of credulous extensions. Where credulous
inheritance is analogous to propositional satisfiability, the ideally skeptical conclusions of a hierarchy
are its theorems, or valid conclusions. We demonstrate that previous "skeptical" theories are not
ideally skeptical, and prove that no purely path-based inheritance definition can compute the ideally
skeptical conclusions of an inheritance hierarchy.

Section 8 and 9 examine several previous theories of inheritance. Section 8 replicates the work
in the body of this paper for off-path inheritance. In section 9, we make more general comparisons
with existing inheritance research and position our work in that larger context.

2 Hierarchies as Belief Spaces

In this section, we present an intuitive interpretation of inheritance hierarchies. In later sections,
we give formal definitions of these ideas; here, we hope to motivate that more formal work by
answering the question of "what we mean" when we draw an inheritance hierarchy. Regrettably,
most previous theories of inheritance omit such a statement of intent, and the lack of such an
intuitive semantics has been one of the criticisms levelled against the entire inheritance endeavor
(c.f. Woods [42], Brachman [7], Bacchus [4], etc.).

Our interpretation of inheritance hierarchies is relatively simple. Each arc in an inheritance
hierarchy-such as figure 1-represents an atomic assertion in the knowledge base of some rea-
soning agent-what this agent "believes," if you will.' Since this paper deals exclusively with
defeasible inheritance, it is possible that an arc in the hierarchy-an atomic belief-is mistaken
(e.g., lumberjacks might not, in fact, be RealrM men); however, in this agent's world-model, each
of these atomic assertions holds. 2

Reachability, or transitivity-by-default, poses a second constraint on world-models. This con-
straint arises when we try to apply an atomic assertion-RealTM men are hearty eaters-to some
other class or individual-lumberjacks, or Joe the RealTM man. The fact that Joe may be a picky

'We put the word "believes" in quotation marks to emphasize that we are not proposing that edges of an inheritance
hierarchy follow any realistic epistemic ontology; rather, we find the term belief, when removed from that formal
context, to be suggestive of the kind of tentative assertion about the world that we wish to describe.

'The exception to this is the case in which the knowledge base contains both the atomic assertion that a (defeasibly)
is an z, and the atomic assertion that a (defeasibly) is not an z. Here, there are (at least) two possibilities: the
reasoner's beliefs may be ambiguous; or they may be (locally) inconsistent. We opt for the ambiguity interpretation
(see below).
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Figure 2: Is a platypus a mammal?

Figure 3: A blue whale is an aquatic creature.

eater does not defeat either the assertion that Joe is a ReaITM man, or the assertion that ReaJTM
men are generally hearty eaters; it merely makes Joe an atypical RealTM man. In the absence
of conflicting information, the world-model of our reasoner is constrained so that subclasses and
individuals are typical of their superclasses.

Finally, we have the third kind of defeasibility in inheritance hierarchies: the defeasibility
of ambiguous conclusions. Unlike the defeasibility of atomic assertions or that of derived (but
uncontested) conclusions, ambiguity's defeasibility arises when there are two explicit and conflicting
arguments. In figure 2, the derived conclusion that platypuses are mammals is directly opposed
by the (equally legitimate) conclusion that platypuses are not mammals. In this case, even the
reasoning agent is assumed to be aware of the defeasibility. Indeed, we interpret such a hierarchy
as asserting that the world must be in such a state that either platypuses are mammals, or they are
not; but this reasoner does not know which. That is, the atomic assertions hold; and the assertions
In some maximal consistent subset of their transitive closures hold; but there may be several such
subsets, corresponding to several possible states of the world.

The situation here is not as hopeless as it may sound. First, the reasoner may prefer one of these
possible world.states. For example, in figure 3, there are derived paths asserting that blue whales
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are aquatic creatures (by virtue of their being whales, which are explicitly aquatic) and that blue
whales are not aquatic (by virtue of their being mammals). If we were reasoning about whales, this
conflict would be easily resolved: the assertion that whales are aquatic is explicit, and therefore
blocks the derived assertion (through mammals) that whales are not aquatic. In the case of blue
whales, we can resolve this ambiguity by resorting to arguments about specificity. Because blue
whales are mammals only by virtue of being whales, information about whales is more specific to
blue whales than information about mammals, and the reasoner prefers to believe that the actual
world-state is one in which blue whales are aquatic. We discuss the notion of specificity, and the
selection of preferred world-states, in greater detail below.

Second, even in truly ambiguous cases-such as r 2-the inheritance hierarchy may contain
contingent information. In this case, the reasoner cannot determine whether the actual world
corresponds to the possible world-state in which platypuses are mammals, or that in which they
are not. However, the reasoner can assert that if the actual world-state is such that platypuses
are mammals, then it follows that platypuses produce milk. In this fashion, the hierarchy supports
conclusions relative to a particular possible world-state.

3 A Path-Based Definition

A path-based theory of inheritance is one which defines the admissible conclusions of an inheritance
hierarchy to be precisely the set of conclusions supported by admissible paths in the hierarchy. For
example, the reason that lumberjacks are believed to be hearty eaters (according to figure 1) is
that there is a path from lumberjack through RealTM man to hearty eater in rl. Like proof
theories, path-based inheritance theories give almost algorithmic characterizations of the process
by which conclusions are derived. In some cases, they lead to tractable inference procedures. In
general, however, path-based inheritance theories lack model-theoretic semantics. Previous path-
based theories of inheritance include the work of Touretzky, Horty, and Thomason [18, 17, 19, 38,
39, 40, 41], Sandewall [32], and Geffner and Verma [14].

In this section, we present a path-based theory of inheritance. In section 4 we describe a model-
theoretic semantics for which this path-based theory is sound and complete. In section 5, we present
an 0(n 4 ) algorithm for computing the conclusions of an inheritance hierarchy supported by this
path-based definition.

Our path-based inheritance theory is similar to that of Touretzky [39, 40], save that it is upwards
reasoning. Upwards inheritance reasons about the properties of some particular object, rather than
about the set of objects possessing some particular property. Some ramifications of upwards vs.
downwards inheritance are discussed by Touretzky et al. [41]; the computational advantages of
upwards inheritance are described by Levesque and Selman [33] (see also section 5, below).

The approach that we describe in this section is also credulous: it allows a conclusion whenever
that conclusion is consistent with some (preferred) interpretation of the hierarchy; or, whenever it
is a plausible conclusion of the reasoner's explicit beliefs. Thus, in a hierarchy like r 2, we expect
to draw both the conclusion that a platypus is-a mammal, and that a platypus is-not-a mammal.
In section 6, we discuss the problem of contingent reasoning-determining the assumptions that
underlie credulous conclusions. For example, we conclude that a platypus is-a milk-producer when-
ever we assume that it is-a mammal. In section 7, we discuss skeptical reasoning, in which only
the certain-uncontested-conclusions of the hierarchy are considered.
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Figure 4: A hierarchy is ambiguous w.r.t. a focus node.

3.1 The Framework

An inheritance hierarchy r = (Vr,Er) is a directed acyclic graph with positive and negative
edges, intended to denote "is-a" and "is-not-a" respectively. We write a positive edge from a to z
as a. z, and a negative edge a. -z. We call a sequence of positive edges aa. . a,'," -z (n Ž_ 0),3 a
positive path, and a sequence of positive edges followed by a single negative edge a -. , ... s,, "z
(n > 0) a negative path.

A path, or argument, a. a ... a,, " (-,)z supports the inference "a is (not) an z." We use
the notation a--+z (resp., a-/+z) to stand for this inference, or conclusion, independently of the path
through which it is derived. One inference-e.g., a--.z-may have many supporting arguments-
a. sl...:n z,a.tl--.tm.z, etc.

Given an inheritance hierarchy r = (Vr, Er) with nodes a,z E Vr, we say that z is reachable
from a (alternately, a-reachable) if there is some path a. -- ... s,, . (-,)x in E*. If the final edge is
positive-s,, -z-we say that z is positively reachable from a; similarly, s,, -:z and negatively
a-reachable. By extension, we say that an edge s - (-,)z is reachable from a if a is positively
a-reachable, and a path al... a,, . (-,)z is reachable from a if every edge on that path is a-reachable.
We say that a hierarchy 1r is a-connected if every node in Vr and every edge in Er is reachable
from a. When reasoning about an inheritance hierarchy w.r.t. a particular node, we call that node
the focus node.

Ambiguity arises when two paths conflict. Formally, an inheritance hierarchy r is ambiguous
wr.t. a node a if there is some node : E Vr such that both a - s""... ".z and a-tl-.-t,. .- ,z are in
Er. In this case, we say that the ambiguity is at z. Ambiguity is always relative to a focus node:
for example, r 4 is unambiguous w.r.t. a, but ambiguous w.r.t. b (at e).

Our definition of ambiguity differs from the conventional one. First, we introduce the notion of
ambiguity w.r.t. a focus node. To previous theories, the hierarchy in figure 4 is simply ambiguous:
w.r.t. a or b or c or d or e. Second, our definition of ambiguity is stronger than that in the literature.
For example, by our definition, r3 is ambiguous w~r.t. whale. This reflects the fact that there are
paths whale • aquatic creature and whale • mammal. --aquatic creature in Er3 . We shall see in
the next section that specificity resolves this ambiguity and the conclaons derivable from r3 are
unambiguous. Previous inheritance theories do not distinguish between resolvable ambiguities-

3The notation a.*.1 •82 abbreviates the set of edges (a- &I, .I" 2); *1 ., a, abbreviates (&I *8,"3 . .
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such as that in figure 3-and unambiguous hierarchies such as figure 1. Hierarchies with ambiguous
conclusion sets-like figure 2-we term truly ambiguous wzr.t. focus nodes.

An inheritance hierarchy r supports a path a. s3 ... 3,, - (-,)z, written r I> a- st-... (-)z,
if the corresponding sequence of edges a- ... -- (-,)z is in Er and it is admissible according to
specificity. We discuss admissibility in the next section. r supports an inference a-,z (resp.,
a./*z) if it supports some corresponding path. For simplicity, we also allow the degenerate path a,
with the corresponding inference a--+a.

3.2 Specificity

A specificity criterion, or preemption strategy, makes admissibility choices among certain com-
peting paths. The idea of specificity dates from Touretzky's inferential distance [39, 40]. Since
then, many definitions of specificity have appeared in the literature, but all operate on the same
underlying principle: more specific information is more directly relevant. For example, in figure 3,
information about whales is more specific to blue whales than information about mammals, so we
can infer that blue whales are aquatic.

The framework that we have presented so far is compatible with many of the existing definitions
of specificity. In this section, we present an original definition. Our specificity criterion closely
resembles Touretzky's original notion of specificity [39, 40], but which is computable in polynomial
time (see section 5). In section 8, we describe an alternate definition of specificity-one resembling
that of Sandewall [32] and Horty et at. [18, 19]-and show how to integrate that definition into this
framework.

An edge v - (-,)z is admissible in r w.r.t. a if there is some path a - s, ... s. - v, (n > 0), in
Er, and

1. None of the edges of a. s. ... 3,.- v is redundant in r w.r.t. a,

2. Each of the edges of a - s, ... 3, • v is admissible in r w.r.t. a, and

3. No intermediate node a, is a preemptor of v. (-,)z w.r.t. a.

Intuitively, an edge is admissible if there is a non-redundant admissible path leading to it that
contains no preempting intermediaries.

A path is admissible in r w.r.t. a if every edge in that path is admissible.
A node s is a preemptor 4 of v. z (resp., v. --z) w.r.t. a if s. -z E Er (resp., s3 z E Er).

For example, the positive edge from whale to aquatic preempts the negative edge from mammal to
aquatic, w.r.t. both whale and blue whale.

The difficulties caused by redundant links were noted by Touretzky [39, 40]: Consider r2 aug-
mented by an additional edge from blue whale to mammal. This edge would be redundant: blue
whales ate typically mammals even without the explicit assertion. However, if the edge from blue
whale to mammal were not excluded, there would be an admissible path blue whale • mammal.
-iaquatic creature-no intermediate node is a preemptor of mammal. --aquatic creature. Clearly,
this is not the intended meaning here (or, indeed, in any network of this form, since the "whale"
node is always more specific than the "mammal" node (w.r.t. "blue whales")).

An edge b.w is redundant in r w.r.t. focus node aif there is some positive path b-tl ... t'.w E
Er, m > 1, for which

4Perhaps "potential preemptor" would be a better term: if s is not on any (admissible, non-redundant, positive)
path from a to v, then a effectively has no bearing on the admissibility of v. (-,)z. This is because preemptors are
checked only in condition 3 of the definition of admissibility. In [35, 37, 36], we gave a stronger-and incorrect-
condition here.
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1. Each of the edges of b. t. • -" t,,, is admissible in r w~r.t. a,

2. There are no c and i such that c - -iti is admissible in r w.r.t. a; there is no c such that c. -itw
is admissible in r w.r.t. a.5

Redundant edges may themselves be admissible. For example, an edge from blue whale to mammal
in figure 3 would be admissible w.r.t. blue whale. However, redundant edges may not contribute to
the admissibility of other edges: mammal- --aquatic creature is not admissible w.r.t. blue whale,
in spite of the admissible path blue whale , mammal. Conditions 2 and 3 in the definition of
admissibility hold for the path blue whale -mammal, aquatic creature, but condition 1 is violated.

The path-based definition of supports yields the following conclusions on the hierarchy r 2 in
figure 2:

r 2  1> platypus---platypus r 2  > furry animal--furry animal
r 2  [> platypus--furry animal r. furry animal-.mammaJ
r 2  I> platypus--egg-layer 2 furry animal--4mml
r 2  •> platypus-4mammal(*, *) r2  > furry anim-milk-producer
r 2  > platypusj'umamma•(*,) r2  > mammal--mammal
r 2  I> platypus---milk-producer r 2  j> mammal--+milk-producer

r 2  t> egg-layeregg-layer r 2  > milk-producer--+milk-producer
r2 [>egglayez-/..mammal

In this case, specificity cannot resolve the ambiguity w.r.t. platypus at mammal, and r 2 supports
both of the assertions marked (***): that platypuses are mammals, and that they are not mammals.
In such a case-when a hierarchy supports conflicting paths-we say that the hierarchy is truly
ambiguous w.r.t. platypuses.

The conclusion-set of r 3 is

r. blue whale--blue whale rs > whale-whale
r 3  > blue whale--whale r3 > whale--#mammal
r 3  •> blue whale--+mammal r 3  whale--+aquatic creature
r 3  I> blue whale--+aquatic creature

r 3  > mammal--.mammal
r 3  I> aquatic creature--+aquatic creature rs > mammal.-*aquatic creature

In this case, specificity resolves the ambiguities w~r.t. blue whale and whale at aquatic creature.
As a -- sult,

r 3  ji blue whale]-aquatic creature and r3 6 whale-,4aquatic creature

The same set of conclusions would result if we added a redundant edge from blue whale to mammal.

4 Model-theoretic Semantics

The path-based inheritance theory of the previous section is a sort of "proof theory" for inheritance:
given a hierarchy, it describes the rules by which conclusions may be drawn. In this section, we
present a model-theoretic approach to understanding the meaning of an inheritance hierarchy.
Rather than the admissible conclusions, this section speaks of the possible world-states-credulous
extensions-that are "models" satisfying the constraints imposed by the hierarchy. In essence,

'Although the definitions of admissibility and redundancy are mutually dependent, they are not circular. Because
the hierarchy is acyclic, it can be ordered topologically, and the definition of an admissible edge v -(-')z depends only
on the redundancy of edges with endpoints strictly topologically earlier than z.
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this section makes rigorous the informal characterization of the meaning of inheritance hierarchies
described in section 2.

Previous theories of inheritance semantics have been translational: a hierarchy is expressed as
a set of statements in some particular (nonmonotonic) logic, and the semantics of the logic provide
semantics for the hierarchy. For example, McCarthy [27], Haugh [161, and Krishnaprasad, Kifer,
and Warren [22, 23] translate inheritance hierarchies into particular circumscriptive theories [26];
Etherington and Reiter [11, 12, 13] treat hierarchies as theories of Reiter's default logic [31]; Przy-
musinska and Gelfond [15, 30] use Moore's autoepistemic logic [29] as a target language; Bacchus [4]
bases his translation on a probabilistic logic; and Boutilier [6] uses a conditional logic.

While the semantics provided by most of these theories are as satisfying as the semantics
of the underlying logics, they are less semantics of inheritance than theories of how inheritance
relates to (or can be expressed in) those logics. In contrast, the theory that we present here is
a theory of direct semantics for inheritance hierarchies. Hierarchies define a space of possible
interpretations, or models. Specificity-drawn from the topological properties of the hierarchy-is
used as a preference criterion over these models. The meaning of the hierarchy is the set of its
maximally preferred models. The result is a preferential semantics like those of Bossu and Siegel [5],
Etherington [10, 12], and Shoham [34] for more general nonmonotonic logics.

Further, virtually every previous-translational or path-based-approach to inheritance se-
mantics contains a fixed ambiguity-resolving preemption strategy.6 Although the selection of an
appropriate preemption strategy is still a subject for debate in the inheritance literature (see, e.g.,
Touretzky et al.'s discussion of the "Clash of Intuitions" [41]), existing systems of inheritance as-
sume some single, fixed strategy. Preemption strategies are variously embedded in the mechanics
of path construction, the translation procedure, or the underlying nonmonotonic logic. This makes
it extraordinarily difficult to compare underlying preemption strategies. As a result, most so-called
"comparisons of inheritance theories" are in reality ad hoc comparisons of system performances on
selected examples.

In contrast, our semantics is modular. We reduce a hierarchy to its possible interpretations,
or credulous extensions. Our semantics for individual extensions is independent of the specificity
criterion used to select among extensions. The credulous extension semantics generalize to arbitrary
upwards inheritance theories, providing a common base for their semantics. By combining with
different selection strategies, these extensions-possible world-states-give sound and complete
model-theoretic semantics for alternate inheritance theories. This means we can compare the
ambiguity-resolving heuristics of various inheritance theories directly and theoretically, rather than
by resorting to ad hoc analysis of specific examples. We make use of this generality to explore
off-path inheritance in section 8, below.

4.1 Semantics for Credulous Extensions

We focus first on the problem of providing a model-theoretic semantics for P single, unambiguous
"credulous extension." In general, we believe that a translational approach t, .neritance semantics
is undesirable. Such an approach trades the topological information inherent in a hierarchy for the
semantics for an existing logic. In particular, translational approaches provide less-than-satisfactory
means for dealing with ambiguities. Often, they merely adopt the ambiguity-resolving strategy of
the target logic, which may not be appropriate for inheritance hierarchies. Where they do provide
additional, explicit ambiguity resolution, it is fixed as a part of the translation procedure.

The approach to semantics for credulous eztensions that we present here is translational. How-
ever, it is not subject to these criticisms of translational approaches precisely because it provides

6The exception to this is Haugh [16]; see the discussion of his work in section 9, below.
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translations only for credulous extensions-unambiguous subhierarchies-and not for a hierarchy as
a whole. Thus, it does not rely on the translation procedure or the underlying logic for ambiguity-
resolution strategies. All ambiguity-resolution is done in the (non-translational) process of selecting
some preferred subset of the credulous extensions; once the set of credulous extensions-or possible
interpretations-for a hierarchy has been established, the semantics for any single extension are
straightforward. In the next section, we discuss the problem of deriving the appropriate preferences
over credulous extensions.

A credulous extension corresponds to a possible world-state-one in the space of world-states
defined by inheritance ambiguity. Formally, a credulous extension of an inherita-re hierarchy
r with respect to a node a is a maximal unambiguous a-connected subhierarchy of r with respect
to a: if Xr is a credulous extension of r w.r.t. a, then for every edge v. (-I)x E Er - Exr, adding
v. (-_)X to Xr would make Xa ambiguous or not a-connected. An example of several credulous

extensions-and some non-extensions-for the hierarchy of figure 2 is given in figure 5.
Several previous inheritance theories include a related but distinct concept. Touretzky [40]

based his inheritance theory on a construct that he called a grounded expansion. Sandewall [32]
used the term extension to refer to structures much like Touretzky's grounded expansions. However,
our credulous extensions differ from Touretzky's grounded expansions and Sandewall's extensions-
we will call them both ezpansions-in two significant ways. First, their expansions are supersets
of the hierarchy-the original hierarchy plus some additional, "disambiguating" information. For
example, in r 2, one expansion adds the additional edge platypus, mammal, while another adds
platypus. -,mammal. In our terms, their expansions are themselves ambiguous hierarchies. Second,
their expansions are of the hierarchy as a whole, while ours are w.r.t. a particular focus node.
To Touretzky and Sandewall, r 2 simply has two expansions, period. In our theory, r 2 has two
credulous extensions w.r.t. platypus, but only one w.r.t. egg-layer or mammal. In both of these
ways, our credulous extensions correspond more closely to the extension of a predicate or of a
default logic theory than to past definitions of the expansion of an inheritance hierarchy.

Because a credulous extension is unambiguous, every edge is admissible. Thus, instead of
Xr J> a--z--there is an admissible positive path from a to z-we need merely check that there is
some positive path from a to z (resp., a7

4 z and negative path). We make use of this to provide a
straightforward model-theoretic semantics for a single extension:

For every vertex z E Vxr, we create a unique propositional variable i. Xr is the theory (in
the propositional calculus) given byii A~iD A iiD _)

z-VEX1z.-.tEExr

Since Xr is unambiguous, XJ is consistent and has a model.
In other words, we translate the edges of Xr. into material implications, allowing inference chains

exactly when there are paths in the credulous extension. It would be nice if all of inheritance seman-
tics were this easy. However, Thomason et al. demonstrate that the translation into propositional
logic does not work even in the simpler case of strict (non-defeasible) inheritance [38], where local
inconsistency in a hierarchy would lead to a globally inconsistent theory. In the general defeasible
case, the propositional theory corresponding to an ambiguous inheritance hierarchy would be in-
consistent. The only reason that the translation into a propositional theory works here is that it is
the translation of a credulous extension: an unambiguous subhiezarchy. Ambiguity resolution must
therefore be applied in selecting the credulous extensions that are the preferred interpretations of
the original hierarchy.

7 A, D, and -. should be read as propositional conjunction, material implication, and negation, respectively).
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a. Credulous extension of r 2 w.r.t. b. Credulous extension of r 2 w.r.t.
platypus platypus

WIL &.-v€Mce,, c. Not platypus.connected nLk& .uc.

d. Can add mammal, milk producer e. Ambiguous w.r.t. platypus

Figure 5: Some extensions and non-extensions of r 2.
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Once we have chosen the preferred extensions-as we discuss in the next section-this trans-
lational semantics provides the desired result. The following theorem states that support-the
existence of an admissible path-is equivalent to entailment in the propositional theory. Thus the
path-based definition of support for credulous eztensions is sound and complete w.r.t. the model-
theoretic semantics defined here.

Theorem 1 (Soundness and Completeness for Credulous Extensions)
Let r be an inheritance hierarchy, with a, z E Vr. Let Xr be a credulous eztension of

r w.r.t. a, and let Xir be the propositional theory corresponding to Xr. The following
are equivalent:

1. xr. > a--z (resp., a-/z).

2. z is positively a-reachable in Xr (resp., negatively a-reachable).

3. xr F i (resp., i).
4 xZ 1= i(,esp., -)

This follows directly from the fact that every path in a credulous extension is admissible. Full
proofs of all theorems may be found in appendix A.

4.2 Selecting Preferred Extensions

Given a single credulous extension, we have seen how to derive a model-theoretic interpretation of
that extension. In fact, the semantics of the previous section would work any time we began with an
unambiguous inheritance hierarchy (which would have only a single credulous extension w.r.t. any
focus node). But inheritance hierarchies are generally ambiguous. As a result, r may have several
extensions w.r.t. a given focus node, a. Some of these extensions may be more intuitive than others.
In this section, we describe a means of selecting the preferred (more intuitive) extensions of r w.r.t.
a. The semantics of r are then simply the sets of interpretations for the preferred extensions of r
w.r.t. the nodes of Vr.

In inheritance hierarchies, specificity gives us a means of ruling out unintuitive interpretations.
Thus, we use the definition of admissibility according to specificity, from section 3.2, above, to
define the preference relation over credulous extensions. We say that one extension is preferred to
another if it is "more consistent" with the constraints of specificity:

Let Xr and Yr be two credulous extensions of an inheritance hierarchy r w.r.t. focus node a.
Then specificity prefers Xr to Yr. (Xr _• Yr) if there are some nodes v and z such that

1. Xr and Y~r agree on all edges whose endpoints topologically precede z,s

2. The edge v- (-,)z is inadmissible in r w.r.t. a, and

3. Y r contains that inadmissible edge: 3sa,...sn, yr

4. Xr. does not include it: X P.sa. ... s,-v -(-,)z. (Note that Xý J>a-s ... sn, by 1.)

If a credulous extension is minimal under this preorder-i.e. no other extension is preferred to
it-we call it a preferred extension of the hierarchy:

Pref(r,a) = (Xr I Vyr, yr Xr
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X 01~

blue. •,i•e.. ue. •hgzie

Figure 6: Specificity prefers Xre W, to Y3 "

where Xr. and Yr are credulous extensions of r w.r.t. a.
Figure 6 shows the two credulous extensions of the hierarchy in figure 3. Specificity prefers

Xblue whale tYblue whale:

r. wale and Y wa le agree up to aquatic creature

2. mammal. -iaquatic creature is inadmissible in r 3 w.r.t. blue whale

3. Yrze whale i> blue whale, whale- mammal• --aquatic creature, and

4. Xblpue ,we Jl blue whale, whale- mammal - -aquatic creature.

Theorem 2 is a soundness and completeness theorem for the path-based definition of section 3
w.r.t. the complete model-theoretic semantics defined here: selecting preferred extensions and pro-
viding translational semantics for those preferred extensions. In section 8, we demonstrate that
other inheritance theories, with other definitions of specificity, can be described in these terms.
This enables us to use the definitions of this section and section 3 to give similar soundness and
completeness results for several existing inheritance theories.

Theorem 2 (Soundness and Completeness)

Let r be an inheritance hierarchy, with a,z E Vr, and let Pref(f, a)be the set of
preferred eztensions of r w.r.t. a. Then r I> a--*z if there is some preferred eztension

Xj E lPref(r, a) such that X.r I- (re,., a-4 z and i

The complete model-theoretic interpretation of r 2 in figure 2, is therefore the set of mod-
els of preferred extensions. In this case, specificity cannot disambiguate the hierarchy, and both
extensions ire preferred. The propositional theories w.r.t. platypus are

platypus A (Platypus D furr-ynimal) A (furry animal D mammal)
A (mammal D milk-producer) A (platypus D egg-ilyer)

$That is, if every topological sort places a and t before x, then XE and Yr agree on edges - (")t.
'Since r I> a--z whenever some preferred extension (of r w~r.t. a) entails ;, I> is analogous to propositional

satisfiability. This is the essence of credulous inheritance: a conclusion is admissible if there is some (preferred)
possiible world-state supporting it. In section 7, we discuss the problem of skeptical inheritance-"valid" conclusions-
entailed by all preferred possible world-states. In terms of the framework of this section, these are the conclusions
supported by all preferred credulous extensions.
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entailing the conclusions

platypus furry animal mammal milk-producer egg-layer

and platpus A (p]atypusD furry animal) A (plpa usDegg-layer)

A (egg-layer D -mammal)

which entails
platypus furryanimal -mammal egg-layer

The preferential semantics allows the conclusion that platypus is-a z if z is entailed by the models
of either of these theories, so playtpus is-a

platypus furry animal mammal milk-producer egg-layer

and platypus is-not-a mammal. The hierarchy is unambiguous w.r.t. its other nodes. The conclu-S• • r2 i
sions w.r.t. furry animal are furry animal, mammal, and milk-producer, since ,yA is

furry animal A (furryZimal D mammal) A (mammal D milk-jprducer)

xr, is

mammal A (mammal D milk-producer)
which entails mammal and milk-producer, and Xr, is milk-producer. Xr2

mR-r-dcffegg-lay is

egg-"layer A (egg--layer D -mammal)

entailing furry animal and -mammal.
In contrast, specificity does provide a preference over the credulous extensions of the hierarchy

in figure 3 w.r.t. blue whale and whale. The interpretation of r 3 w.r.t. blue whale is therefore the

interpretation of the single preferred extension, Xre fofgr6
blue whale Aa(bluerwhalegurhale

blu waleA ble wal Dwhae A (whale D mammal)
A (whae aquatic•creature)

This entails the conclusions (w.r.t. blue whale)

blue whale whale mammal aquatic creature

Similarly, specificity prefers the extension w.r.t. whale in which whales are aquatic, with the cor-
responding propositional theory

whale A (whale D mammal) A (whaleD aquaticcreature)

and the hierarchy entails the inferences that a whale is-a whale, mammal, and aquatic creature.
The hierarchy is unambiguous w.r.t. mammals and aquatic creatures, so there is only one credulous
extension w.r.t. each of these:

mammal A (mammal D -aquatic creature)

and a mammal is-a mammal, but is-not-a aquatic creature; and

aquatic creature

so an aquatic creature is-a aquatic creature.
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blue U~e

Figure 7: blu computes specificity on r 3 w.r.t. blue whale.
'•blue whale

5 Computing Specificity

The preference criterion approach to ambiguity resolution is satisfying fronm a semantic perspective,
but it does not tell us much about how to derive the preferred extensions of a hierarchy. In this
section, we give a polynomial-time-0(nS)-algorithm for computing r, the specificity eztension
of r w.r.t. a. This algorithm demonstrates that upwards inheritance is tractable for credulous
(goal-directed) on-path reasoning. In section 7, we extend this result to include ideally skeptical
reasoning; in section 8, we give a similar algorithm for off-path inheritance.

There are several other computational theories of inheritance in' the literature. Those of Horty
et al. [18, 19] and Haugh [16] as well as the ambiguity-propagating algorithm of our [36, section 4]
are "skeptical"-they attempt to compute only those conclusions that are unopposed. We discuss
skeptical theories in section 7, below, where we show that none of these previous theories are
ideally skeptical. Geffner and Verma [14] also offer an algorithm that is sound but incomplete for
their inheritance theory. No previous path-based theory has been shown tractable for credulous
inheritance.

Etherington [12, p. 89] gives an algorithm for finding extensions of general default theories.
Kautz and Selman [21, theorem 1] have adapted this algorithm to find a single (arbitrary) ex-
tension of a disjunction-free ordered default theory. This class includes the inheritance theory
of Etherington and Reiter [12, 13]. However, Kautz and Selman's 0(n 2 ) algorithm finds only a
single arbitrary extension of the hierarchy, and cannot be used to determine whether a particular
conclusion is supported. Indeed, Kautz and Selman demonstrate that goal-directed reasoning-
determining whether there is an extension supporting some particular conclusion-is, for ordered
default theories, A/P-hard [21, theorem 3]. Similarly, they show that skeptical reasoning for the
same class of theories is ANP-hard [21, theorem 7]. In [33, theorem 2], Levesque and Selman demon-
strate that downward inheritance reasoning (as espoused, e.g., by Touretzky [39, 40]) is Y/P-hard,
whether skeptical or credulous, on- or off-path.

Our algorithm is therefore the first sound and complete algorithm for credulous inheritance
reasoning. It generates Er the specificity extension of r w.r.t. a. r is a subhierarchy of r
containing only and exactly the admissible edges of r w.r.t. a. For example, the specificity extension
of the hierarchy in figure 3 w.r.t. blue whale is shown in figure 7.

The following algorithm always yields a unique specificity extension Er for a hierarchy r w.r.t.
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focus node a.

COMPUTE-SPECIFICITY-EXTENSION (r,a)

Let Er contain the a-reachable nodes of r, and no edges. ; EF will be the specificity eztension
; of r w.r.t. a.

R 0 ; R will hold the redundant edges of r
; w.r.t. a.

For each node z in EF in topological order ; From a to ...

Add edges v (-) z from r to r; Restore -edges

For each edge v z(-) a in Er, in reverse topological order ; Now weed out preempted z-edges:
Let • be .F minus any nodes that are preemptors ; Remove potential preemptors

of v z(') a (i.e. remove any edges into and out of
preempting nodes) ; Is v still positively a-reachable9

If E* no longer contains a positive path from a to v
then remove the edge v • (-,) z from EF ; If not, it's preempted

For each remaining positive edge p - z ; Check if it's redundant
If there is a positive path from p to z in Er

that goes through no negatively a-reachable nodes ; If so,
then move p a z from EEr to R ; Remove the edge-temporarily

Restore the redundant edges in R to Ejr ; Redundant edges are still admissible

Return E•

Theorem 3 (Complexity of COMPUTE-SPECIFICITY-BXTENSION)
Constructing Er is 0(n5 )

The following theorem is essentially a proof of correctness for COMPUTE-SPECIFICITY-
EXTENSION. It says that Er. contains all and only those edges of r that are admissible w.r.t.
a.

Theorem 4 (Correctness of COMPUTE-SPECIPICITY-EXTENSION)
Let r be an inheritance hierarchy, with a E Vr, and let Er be the specificity extension
of r w.r.t. a. Then EEr = {v - (-()zlv- (-,)z admissible in rw.r.t. a}

The subhierarchy of admissible (w.r.t. a) edges in r may still be ambiguous. For example,
all of the edges in a diamond ambiguity such as the platypus diamond of figure 2 are admissible;

Fplatypus, the specificity extension of r 2 w.r.t. platypus, is simply r 2 and, like r2 , has two credulous
extensions wr.t. platypus. However, the ambiguities that can be resolved by specificity have been:
the credulous extensions of E.r are precisely the preferred credulous extensions of r w.r.t. a.

Corollary 4.1 Let r be an inheritance hierarchy, with a E Vr. Let Pref(r, a)
be the set of preferred credulous extensions of r w.r.t. a and let Err be the specificity
extension of r w.r.t. a. Then Xr4 E Pref(r, a) if Xr is a credulous extension of Er.
w.r.t. a.
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Corollary 4.2 Let r be an inheritance hierarchy, with a E Vr. Let Er. be the
specificity eztension of r w.r.t. a. Then r J> a--*z iff z is positively a-reachable in
Er, (reqp., a-4z and negatively a-reachable).

This means that an inference a--z is supported by r-alternately, a preferred credulous ex-
tension of r w.r.t. a entails i-iff z is positively a-reachable in Err. Since verifying reachability
is linear in the number of edges, it follows that computing the credulous conclusions of r is also
tractable.

Corollary 4.3 (Complexity of Credulous Inheritance)
Deciding whether r J> a- z is 0(n') (resp., a7

4 z).

6 Reason Maintenance and Inheritance

In this section, we define a reason maintenance system for inheritance hierarchies. A reason main-
tenance system is a construction that keeps track of the assumptions or justifications supporting a
particular conclusion; several systems of this type appear in the literature [8, 9, 24, 25, 28].

In the case of inheritance hierarchies, the reason maintenance system keeps track of the multiple
credulous extensions of a hierarchy (w.r.t. each node), using a set of propositional labels for the
nodes of that hierarchy. This function mimics the behavior of de Kleer's assumption-based truth
maintenance system (ATMS) [8]; when we introduced the labeling scheme in [35], we called it the
A TMS-labeling of the hierarchy.

The reason maintenance labeling keeps track of all of the possible interpretations-the credulous
extensions-at once. We exploit this feature to draw contingent conclusions: that is, to determine
what follows if we make a certain assumption. For example, in figure 2, we can conclude that
if platypuses are mammals, then they produce milk. In section 7, below, we use the labeling to
examine the problem of skeptical inheritance-computing what conclusions hold in every credulous
extension.

For each pair of nodes, a and z, in Vr we define two labels: IzJ]r, the conditions under
which a is an z, and [r-., the conditions under which a is not an z. [1]1 and [-Jr may be
thought of as operators on nodes returning boolean formulae. For example, we would expect that
[hearty eaterJrmejk would be [TI-lumberjacks are expected to be hearty eaters-while the

negative label r k would be [T]-lumberjacks normally don't eat quiche. How-

ever, [zr, isn't always v[z-lr: both the positive label [quiche-eater] eary eater and the negative

lheart eater are [1], since r 1 gives us no information about whether hearty eaters

tend to eat quiche.

In general, we might reason about whether a is an z in some particular r as follows:

Let (1o8r(z) be the "positive children" of z in r-the nodes Pi E Vr with positive

edges p. z E Er-and let Oiegr(z) be the "negative children" of z in r-n E Vr I
n . -iz E Er. Suppose that, for all p E (lOsr(z), a is not a p; i.e., r V a--p. Then
r L, a-.:, because there is no support for z. So

- O r ..4J1r

Here, we have introduced a notational shorthand: [CAosir(z)]! really means

(VpEcp..r(-) [PE), where an empty disjunction is to be read as ±.
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Figure 8: The labeling of r2 w.r.t. platypus.

On the other hand, if a is a p, for some p E qPOr(z), but a is definitely not an n for
any of z's negative children n, then a is also an z: z's positive children provide it with
a supporting argument, and there are no explicit counterarguments. That yields

[lior(z)jl^(~legr(-)J') D izir

Finally, it could be that at least one of Ioer(z) is true, but at least one of legr(Z)
is also true. In this case, z is ambiguous: it has some support, but there is also a
counterargument. If z is ambiguous, its value is unconstrained. In some credulous
extensions, we would expect [zJr to be true, and in others it should be false. When
this situation arises, z becomes a choice-point and we introduce i-the free variable
corresponding to the node z-into the labeling scheme. The truth value assigned to i
shouldn't matter most of the time, but in this special circumstance-when [Qr(z)JJ,
and JGaeqr(z)]jr, so z is ambiguous-we want [z]r to vary freely with i.

((100,r(z)Jr. A [IGa-gr(z)ir) D ([. - i)

Conjoining these three constraints gives us the conditions under which a is an z. The positive
label for z w~r.t. a is given by:

14Jr -. [([oer(:)1. A (~A[ r(:)j.)) V (l[Ivr(z)]r A |a.egr(z)]r A 0)

whenever z is not a leaf.
In addition, we have [ajr = [T]-a is always an a-and Vz, if z i a is a leaf of the hierarchy,

[,]r = [±]--trivially,. ' • a--+z. These rules for generating labels mimic the construction of paths-

reachability-by concatenating the edges of the hierarchy.
There is a similar labeling scheme for 171r., the conditions under which r ý> a7

4 z:

1. a]rM = [±]: a is never a non-a.

2. If z 6 a is a leaf of r, [ir.J = [.]: since: cannot be a-reachable, r V, a7
4 .

3. For a generic node, z,

W-]r = ((..[O...r(:)j) A iOegr(M)1r) V (lOj..r(z)]r A [A )egjrJ(z)J A ~i)
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For example, the labeling of the platypus diamond of figure 2 w.r.t. platypus is shown in
figure 8. In this hierarchy, [mamma~pla8 tyr = [mammal]. Although this label says very little-
platypuses are mammals in those extensions in which they are mammals-the propagation of labels

yestypsr = [mammal]-platypuses are also milk-producers in precisely those
extensions in which they are mammals. This is exactly the sort of contingent reasoning that we
would expect our interpretation of inheritance hierarchies to capture.

Theorem 5 demonstrates that these labels keep track of all of the credulous extensions of a
hierarchy at once. In the following sections, we present several useful corollaries of this theorem.

Theorem 5 (Correspondence Theorem)
Let r be an inheritance hierarchy, with a, z E Vr. Then there is a correspondence

between the set of credulous extensions of r w.r.t. a, and the truth-assignments to
the free variables in the labels of r w.r.t. a, such that the truth-assignment assigns
[.Jr. = [T] iff the corresponding extension supports a---z (resp., I1]r. and a-/4z).

The mapping from extensions of r w.r.t. a to truth-assignments assigns a variable i [T] iff a is-a
x in the extension; the inverse mapping creates an extension containing those edges q . s E Er for
which [qJr. = [•s] = [T], and q -- is E Er whenever [q]Jr = [T] and I]• = [_]. A proof of the

Correspondence Theorem may be found in appendix A.
It follows immediately that the labels of an inheritance hierarchy are computing reachability:

Corollary 5.1 Let r be an inheritance hierarchy, with a, x E Vr. Then [z[xJ is
satisfiable iff x is positively a-reachable in r. (resp., [ and negatively a-reachable).

Of course, reachability is not really what we are interested in. r supports an inference if its
conclusion is reachable by an admissible path, not just any path. That is, the labels are not taking
into account specificity-the preemption of an argument by a more specific counterargument.

Happily, we have a way of constructing the subhierarchy of admissible edges in r w.r.t. a-this
is Er. It follows immediately from theorem ?? and corollary 5.1 that satisfiability of the labels of

w.r.t. a corresponds to admissibility in r w.r.t. a, i.e. 1>.

Corollary 5.2 Let r be an inheritance hierarchy, with a, z E Vr, and let Ej be the

specificity extension of r w.r.t. a. Then x]ExrJ is satisfiable iff r 1> a--+z (reap., ,,IE

and aý+x).

This means that to take specificity into account-to reason only about F's preferred extensions w.r.t.
a-we can simply apply COMPUTE-SPECIFICITY-EXTENSION to r, a and label the resulting
Er. Any contingent conclusions-or, as we shall see in the next section, skeptical conclusions-that
we draw using the labels of Er w.r.t. a apply to r taking specificity into account.

An alternative but more complex approach to labeling with specificity might be to integrate
the specificity criterion directly into the labeling scheme. In this case, we would condition the
acceptance of a node on its non-preempted children. Unfortunately, even for a relatively simple
preemption scheme such as the one described in section 3.2, these labels are quite complicated. For
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example, the "specificity label" for a-*z is

V A ( A V

,PECp. ,r(-) \ \la.--s-.o- ..iadmi,.uble .{i l,•'.•.zEEr} / /A V Hr. A- A V
nECnegr(c) &ia., ...- .d,,misible} {ilja'.zEFr}

On each line, the left-hand portion-~�rja or [nlr--is simply the old term ()our(z) or GzegF(z)-

z's children-and the right-hand portion formalizes "and that child is not preempted." For more
complex preemption schemes, such as that described in section 8, the labels become still more
complicated.

Fortunately, we do not have to resort to embedding specificity in the labeling scheme. The speci-
ficity extension of a hierarchy provides us with precisely the information we need-a subhierarchy
containing only admissible edges-and simple reachability in the specificity extension is equivalent
to reachability by an admissible path in the complete hierarchy. Thus, instead of using the more
complex "specificity labels" on the full hierarchy, we can compute the specificity extension of the
hierarchy and use the simpler labels defined in section 6, above.

We can use this labeling in updating the hierarchy. Consider, for example, the hierarchy of
figure 2. If we later discover that platypuses are mammals, the labeling automatically tells us that
they are milk-producers as well (since [milk-producer]hy, = [mammal], and now jmammal]J =

[mammal] = [T]. In fact, we can incorporate various types of ambiguity resolving information-
from domain-specific knowledge to updated beliefs-into this labeling simply by adding further
constraints.

The complexity of this extended labeling algorithm, including further constraints, is unknown.
Since it is a special case of boolean satisfiability, the problem may be APP-hard. However, for the
limited case of determining that a label is falsifiable-i.e., that there is some credulous extension
in which the corresponding inference does not hold-there is a polynomial algorithm due to Kautz
and Selman [21]. In the next section, we explore the problem of skeptical inheritance: computing
the intersection of credulous extensions.

7 Skeptical Inheritance

Up to this point, we have been discussing credulous inheritance-reasoning in which a conclusion
that holds in some plausible (preferred) extension is acceptable. This type of reasoning is analogous
to finding satisfiable sentences. In this section, we discuss skeptical inheritance: computing those
inferences that hold in all plausible interpretations. These conclusions are the valid consequences
of the hierarchy-what must follow from the reasoners beliefs, no matter which possible world-state
actually exists.

The labeling scheme of section 6 provides a language for expressing these two types of inher-
itance. We have seen that credulous inheritance permits a conclusion a--+z iff [z]Jr is satisfiable.
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Figure 9: Applying ambiguity blocking inheritance to rs wzr.t. a yields BE.

Formally, ideally skeptical inheritance supports exactly those conclusions true in every (pre-
ferred) credulous extension. It follows from theorem 5 that a isa z in every credulous extension
of r w.r.t. a if" [,]r. is valid. Similarly, intersecting preferred credulous extensions corresponds to
taking the valid labels of EF.

Corollary 5.3 Let r be an inheritance hierarchy, with a,z E Vr, and let Er be
the specificity extension of r v.r.t. a. Then xz]r. is valid (tautological) if a--#z holds

EEin every credulous eztension of r w.r.t. a, and [z]. is valid iff a-*z holds in every
preferred credulous eztension of r w.r.t. a (reap., [z]J[ and negatively a-reachable).

Corollary 5.3 tells us that IzJ]1 is valid if" a-,z holds in the intersection of P's preferred
credulous extensions (w.r.t. a). Determining this set of conclusions is exactly the problem of
ideally skeptical inheritance.

In the next sections, we present two path-based approaches to skeptical inheritance that have
received some attention in the literature. We demonstrate that these approaches are not ideally
skeptical: they do not compute exactly the always-true conclusions of a hierarchy. We show fur-
ther that no path-based approach can be both sound and complete for ideally skeptical inheritance.
The problem of ideally skeptical inheritance-intersecting credulous extensions-lies outside the
language of path-based inheritance theories. The difficulty lies in the fact that some conclusions
may be true in every credulous extension, but supported by different paths in each. Any path-
based theory must either accept one of these paths-and be unsound, since such a path is not in
every extension--or reject all such paths-and with them the ideally skeptical conclusion-and be
incomplete.

7.1 Ambiguity Blocking Inheritance

The first attempt at skeptical inheritance is due to Horty et at. [18, 19];10 Haugh [16] gives an
equivalent circumscriptive definition. They argue that an ambiguous line of reasoning should not

"1According to Horty (personal communication), a "skeptical" approach to inheritance is one which offers a unique,
unambiguous set of conclusions for any inheritance hierarchy. This differs with our intuition that "skeptical" means
"unwilling to believe uncertain conclusions." In Horty's view, computing the intersection of the credulous extensions
is only one way to reason "skeptically."
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kC

Figure 10: Br6 computes "parity."

be allowed to interfere with other potential conclusions. Because this approach discontinues a line of
reasoning as soon as an ambiguity has been reached, Haugh calls it ambiguity blocking inheritance.
Although Horty et aL, and Haugh describe a specific theory-including, e.g., a particular specificity
criterion-ambiguity blocking inheritance potentially defines a general approach. We paraphrase
ambiguity blocking inheritance here:

Let BF initially be r. Starting from the focus node a, consider each node a in topological order.
If r is truly ambiguous w.r.t. a at z,11 remove all edges into and out of a from Bý. When
the entire hierarchy has been scanned, B! is truly unambiguous w.r.t. a. This is the ambiguity
blocking skeptical extension of r; ambiguity blocking inheritance concludes that a network r
admits a--#a exactly when BF > a * . ,," a (resp., a7-z and a- s.- s,. --a).

While ambiguity blocking inheritance seems reasonable, it results in some anomalous conclu-
sions. Consider, for example, figure 9. Ambiguity blocking inheritance on r with focus node a
determines that e is ambiguous w.r.t. a, so it eliminates all edges to and from e. In particular,
it eliminates the edge e- -if, making f unambiguous w.r.t. a: B~r. ý> a--f. This is certainly one
possibility. But it is also possible that a-ie; and if a-ie, it is unclear whether a-- f-that is, a
might not be an f. It is certainly not safe to assume from the ambiguity at e that the path a- b . d, f
is always true. But this is precisely what ambiguity blocking inheritance does. This anomaly was
first noted by Horty et al. [18, 41].

A more severe anomaly follows from this first. Ambiguity blocking inheritance computes a kind
of "parity" on the number of ambiguities in a path. According to ambiguity blocking inheritance,
the network in figure 10 is skeptical as to whether a is-a e or an i, but allows the conclusions that
a is-a g and a j. Similarly, this net is skeptical about whether b or f is-a j, but allows the paths
from a and d to j. More than the first anomaly, this result calls into question the intuitiveness
of ambiguity blocking inheritance. In any case, ambiguity blocking inheritance is unsound w.r.t.
ideally skeptical inheritance: there are inferences a-'z such that Br j> a-*z, but [zJr is falsifiable.
Figures 9 and 10 both illustrate this unsoundness of ambiguity blocking inheritance.

"11r is tndy ambdgno. w.r.t. a at z if r > a-- z and r ý> az.
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Figure 11: HJf results from ambiguity propagating inheritance.

7.2 Ambiguity Propagating Inheritance

Ambiguity propagating inheritance allows ambiguous lines of reasoning to proceed. An argu-
ment thus cannot be certain unless there are no counterarguments; in contrast, ambiguity blocking,
inheritance considers only unambiguous counterarguments. Like ambiguity blocking inheritance,
ambiguity propagation defines a family of algorithms. Haugh [16] gives a circumscriptive definition;
in [361, we describe an O(IErI) algorithm. Again, we paraphrase:

Starting from the focus node a, consider each node a of r in topological order. If r is truly
ambiguous w.r.t. a at z, rather than eliminating all edges to and from z, retain z but mark it as
ambiguous w.r.t. a. Although paths to and from a will not be included in the final result, they
can still act as counterarguments during this processing and prevent other nodes from being
unambiguous. llý is the a-connected subgraph of r with those edges z- (-')y E Er such that
neither a nor y is marked ambiguous w.r.t. a.

For example, the cascading ambiguities of figures 9 and 10, which gave ambiguity blocking
inheritance difficulty, present no problem for ambiguity propagating inheritance. Figure 11 shows
Hr..

IIr. is sound wzr.t. ideally skeptical inheritance: if llr .> a--, then [air. is satisfiable. In fact,
r.r computes the subhierarchy of r containing exactly those edges of r that are in every (preferred)

credulous extension of r w.r.t. a. However, Hr. is incomplete: there are some inferences a--*z that
are supported by every credulous extension of r w.r.t. a but have different supporting arguments in
different extensions. These conclusions are not supported by Hr.. We demonstrate such a hierarchy
in the next section. In these circumstances, we need to reason about inferences rather than paths.

7.3 Ideally Skeptical Inheritance

Consider the hierarchy in figure 12.12 Every credulous extension w~r.t. seedless grape.vine supports
the inference seedless grape vine--+plant, so ideally skeptical inheritance concludes that seedless
grape vines are plants. Suppose, for example, that a seedless grape vine is a fruit plant; then it is a
plant. Suppose that it is not a fruit plant; then it is unambiguously an arbor plant, and therefore

12Matt Ginsberg has independently proposed a hierarchy with similar properties, in which Nixon is always politically
motivated.
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Figure 12: The intersection of credulous extensions is not a path-based notion.

a plant. In any state of the world, no matter how we resolve the ambiguities of the taxonomy, a
seedless grape vine is a plant. This is reflected in the fact that [plant]r r e = [T].

If we wish to determine what is true in all possible worlds, we cannot avoid this kind of reasoning.
There are facts which are true in all credulous extensions, but which have no justification in the
intersection of those extensions. This is why we cannot generate an "ideally skeptical extension"-
no particular set of edges of r from seedless grape vine to plant is in every credulous extension,
so no such path can be in the "ideally skeptical extension." Thus every path-based approach to
skeptical inheritance will always be either unsound or incomplete with respect to ideally skeptical
inheritance.

Theorem 6 Any path-based inheritance theory will be either unsound or incomplete
for ideally skeptical inheritance; the intersection of credulous eztensions is not a path-
based notion.

Proof: A path-based theory insists that admissible conclusions are only those
supported by admissible paths. If a path-based theory supports the conclu-
sion seedlessgrape vine-- plant, it must admit at least one path that supports
seedless grape vine-- plant. But the only paths that support seedless grape vine--+plant
are

seedless grape vine. grape vine . firuit plant, tree- plant

and
seedless grape vine . grape vine. vine. arbor plant , plant

Neither of these conclusions is in every credulous extenmion. A theory accepting either
of these conclusions is therefore unsound for ideally skeptical inheritance. Alternately,
a path-based theory can reject .both of these (unsound) paths. However, the theory
then accepts no path supporting the conclusion seedless grape vine--* plant, so it cannot
accept that conclusion. Since that conclusion holds in every credulous extension, such
a path-based theory is incompleae for ideally skeptical inheritance.

This theorem deserves a few remarks. The first is that its proof depends only on the definition
of a path-based theory and not on any particular properties of any individual path-based theory.
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Therefore, it applies to the class of path-based theories as a whole. The second is that the hierarchy
r 7 does not involve specificity. It is therefore independent of any choice of specificity-criterion, and
holds for all such criteria (assuming that no specificity criterion would resolve diamond ambiguities).

This result demonstrates that we can only compute the always-true inferences by, in effect,

reasoning about all of the credulous extensions. Fortunately, in acyclic hierarchies, such reasoning is
tractable. Corollary 5.3 establishes that a conclusion holds in the intersection of preferred credulous

extensions (of r w.r.t. a) whenever ýa]JaJ" (resp. []a) is valid. In section 5, we demomnstrated
that constructing Er-eliminating specificity-requires polynomial time. Kautz and Selman [211
describe a polymonial time procedure for computing the validity of a label (without specificity).
By applying Kautz and Selman's algorithm to Er, we can compute the intersection of preferred
credulous extensions-ideally skeptical inheritance-in polynomial time.

Corollary 6.1 (Complexity of Skeptical Inheritance)
Ideally skeptical inheritance-computing the intersection of preferred credulous
eztensions-is 0(ns)

Proof: By application of Kautz and Selman's NORMAL-UNARY-SKEPTICAL [21,
p. 196] to the result of our COMPUTE-SPECIFICITY-EXTENSION (section 5). The
complexity of the algorithm follows directly from theorem 3 and Kautz and Selman's [21,
theorem 9]. Its correctness follows follows from that theorem and our corollary 5.3.

8 Off-Path Inheritance

The inheritance theory presented above uses a specificity criterion called on-path preemption. In
this type of ambiguity-resolution, an edge is inadmissible if every non-redundant admissible prefix
contains a preemptor. In this section, we consider an alternate specificity criterion: that of off-path
preemption. In off-path preemption, an edge is inadmissible if any admissible prefix contains a

preemptor.
The terms on- and off-path preemption were popularized by Touretzky, et al. [41]. On-path

preemption appeared first in Touretzky's work on inferential distance [39, 40]. Off-path preemp-
tion is described in a credulous version by Sandewall [32],13 in an ambiguity-blocking skeptical
version by Horty, et al. [18], and in both ambiguity-blocking and ambiguity-propagating versions

by Haugh [16].
Previous comparisons between on- and off-path preemption have resorted to arguments about

the correct semantics of hierarchies with the topology of r8 . The difference is reflerted in the
hierarchy of figure 13 In r8 , the edge b- --e preempts the inference a-*e-barring both a - b- d- e,
and a- c - d- e. On-path preemption allows a-*e, since a . c . d. e (as well as a 7

4 e, since a. b. -,e).
These arguments, based on the "intuitive" interpretation of rs with various names assigned to its
nodes, are nothing more than ad hoc attempts at proof-by-example.

We have argued that our approach to inheritance makes more principled comparison possible.
In particular, by isolating the preemption strategies from the underlying theory, we can compare
these criteria directly. In this section, we present the same approaches to off-path preemption as
we have described for on-path, above. At the end of this section, vie show that the principles

brought out by analyzing the two types of inheritance within our framework can be constructively
compared, and give some opinions as to the relative merits of on- vs. off-path preemption.

" 3 Sandewall's notion of extension differs significantly from ours: his extensions are actually expansions a la Touret-

sky, and are limited to preferred expansions at that.
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Figure 13: On- vs. off-path preemption.

Path-Based Definition The off-path definition of admissibility is:

An edge v- z is off-path admissible in r w.r.t. a if no truly unambiguous off-path admissible
prefix a. sl ... n. -v, contains a preemptor of v - z (resp., V. - z).

The definition of preemptor remains the same. Because off-path preemption says that no
(unambiguous) path through v to z may contain a preemptor of v- (-,)z, this definition does not
need to explicitly exclude redundant paths.

We say that r off-path supports a--+z (resp., a7
4 z) if there is some sequence of off-path admis-

sible edges a. s1 .-. -s, z (resp., 'a -aI n -:z) in r w.r.t. a.

Model-Theoretic Semantics Here, we simply replace the definition of admissibility in the
model-theoretic semantics of section 4.2 with that of the preceding paragraph.

If Xr and Yr. are two credulous extensions of an inheritance hierarchy r w.r.t. focus node a,
then off-path specificity prefers Xr to Yrif there are some nodes v and z such that

1. Xr and Yr agree on all edges whose endpoints topologically precede z,

2. The edge v. (-,)z is off-path inadmissible in r w.r.t. a, and

3. Yr. contains that inadmissible edge.

4. Xr does not contain it.

The model-theoretic semantics for credulous extensions remains as described in section 4.1.
Minimal extensions under this ordering are the off-path preferred credulous extensions of r w.r.t.
a, and their models are the off-path preferred models of r w.r.t. a: r off-path supports an inference
iff that inference is entailed by some off-path model of r w.r.t. its focus node. By changing specificity
criteria, we obtain different conclusion sets and correspondingly different preferences over credulous
extensions. In general, it should be possible to obtain these results using a preemption strategy
corresponding to any upwards theory of inheritance.14

"14Because the definition of credulous extension is upwards, the approach presented here does not lend itself directly
to the analysis of downwards inheritance theories.
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Computing Specificity The algorithm for computing the specificity extension of a hierarchy
w.r.t. a focus node can be adapted for off-path preemption:

COMPUTE-OFF-PATH-SPECIFICITY-EXTENSION (1, a)
; r' will be the

Let flr contain the a-reachable nodes of r, and no edges. ; off-path specificity eztension
of r w.r.t. a.

For each node z in 0.r,in topological order ; From a to ...:

Add edges v - (') z from r to fir ; Restore ---edges

For each edge v - z (resp., v • - z) in Or., in reverse topological order ; Now weed out
For each potentially preempting edgz w • -- z (resp., w • z) in flf ; preempted 2-edges:

If w is positively but not negatively a-reachable in (1r
and for contains a positive path from w to v ; ... then w preempts v - H z

then remove the edge v - z (resp., v • -, z) from 0E ; so remove it from 11r

Return Air

Like Er, flr contains only the (off-path) admissible edges of r w.r.t. a. Computing off-path
support is reduced to verifying reachability in fnr. The complete procedure runs in polynomial
time.

Labeling Since flr eliminates the inadmissible edges of r w.r.t. a, we can use the labels of section 6
to calculate contingent conclusions and ideally skeptical inheritance, in much the same way as we
did for on-path preemption. It follows immediately from the properties of Or and theorem 5 that

[4.T ' is satisfiable if" r off-path supports a--z and [zx]2r is valid iff a-•+z is an ideally skeptical

conclusion of r using off-path preemption. (resp., [z]-ff anda7
4 z).

On- or Off-Path? By defining off-path preemption in this framework, we can compare its under-
lying assumptions to those of on-path preemption, presented above. By examining the differences
in preference criteria, we see the principles behind these two types of reasoning:

On-path preemption: an edge is inadmissible if every (non-redundant) admissible prefix
contains a preemptor.

Off-path preemption: an edge is inadmissible if any (unambiguous) admissible prefix
contains a preemptor.

That is, off-path preemption replaces the existential quantifier in the on-path definition of admis-
sibility with a universal.

Let ti, ...,t, be many types of ts, each differing from the typical t in specific ways. For example,
t might be birds, and the t1 might be flightless birds, tiny birds, songbirds, etc.. Each of these
categories inherits most of the default properties of birds, but overrides some particular default.
Now, if some particular bird inherits from several of these ti, what are its expected properties?

Off-path preemption says that a particular bird is atypical for a particular default if it is a
member of any ti that overrides that default-e.g., doesn't fly if it's a penguin-even if it's a
member of many other subclasses-songbirds or even tree-dwelling birds-that are normal for the
default. In other words, off-path preemption overrides default behavior whenever possible.

In contrast, on-path preemption remains agnostic about overriding defaults. If something is a
member of an atypical subclass ti, it certainly may be atypical for the corresponding property of t:



L. A. Stein Resolving Ambiguity in Nonmonotonic Inheritance 27

penguins may not fly. However, if it is also a member of ti which does not override that default-a
songbird or tree-dwelling penguin-then it may arguably possess default behavior-it may be a
flying penguin, after all.

The reason for defining t 1 , ... , tn as subtypes of t is generally to enforce certain distinctions
between the tis and typical ts: subclasses are not the same as their superclasses, or we wouldn't
have defined the subclass in the first place. The argument in favor of off-path reasoning says that
anything which is a ti should probably be assumed to be at least as unusual as tis. Off-path
preemption's strategy is to assume maximal atypicality. In contrast, on-path preemption concedes
that there are arguments both ways. One argument relies on the default behavior of subclasses,
while the other depends on the explicit information about atypicality. On-path inheritance makes
no distinction between these, while off-path inheritance favors the explicit overriding of defaults.
If we are confident that our hierarchy is fully fleshed out and contains all relevant information, it
may well be that off-path preemption provides a more appropriate description of our intuitions.' 5

9 Comparisons with other Inheritance Theories

Previous attempts to compare existing inheritance theories have proceeded largely on the basis
of analysis of specific results on particular examples. Because existing theories either translate
inheritance hierarchies into distinct target logics, or bu"yy the amb.guity-resolving strateg-es (such
as preemption) in complex path-based or translation criteria, little if any principled analysis has
been possible. Touretzky et al. [411 attempt to overcome this difficulty. They delimit a space of
existing and potential inheritance theories, identifying several dimensions along which these theories
vary. Nonetheless, this work still relies largely on examples rather than principles, and does not
separate ambiguity-resolution from the space over which the ambiguities arise.

A second attempt to unify and compare existing inheritance theories is due to Haugh [16].
Haugh translates inheritance theories into circumscriptive meta-theories. His theory is modular
with respect to the preemption axioms used, and indeed he presents preemption axioms for theories
of credulous inheritance, skeptical inheritance both as presented by Horty, et al. [18] and in a
corresponding ambiguity-propagating form, and various types of off-path preemption. However,
he does not distinguish a set of interpretations corresponding to these preemption axioms, making
it difficult to identify the intuitive principles to which his various axioms correspond. Haugh's
confounding of meta-strategies for addressing ambiguity-credulous versus skeptical reasoning-
with particular ambiguity-resolving heuristics-on- versus off-path, etc.-is a further symptom of
this failure to identify the underlying space over which ambiguity quantifies.

The numerous preemption strategies in the literature result from differing interpretations of
the notion of "subclass," or specificity. The underlying principle is that more specific information
should override more general. But there is little agreement on a single definition of "more specific"
at the level of the nodes and edges of an inheritance hierarchy. In the body of this paper, we
present on-path preemption, which is conservative with respect to the acceptance of abnormality.
In section 8, we present off-path preemption, which provides a more promiscuous approach to
abnormality in inheritance.

The different treatments of true ambiguity are reflected in the debate over skeptical inheri-
tance. In section 7, we describe previous approaches to skeptical inheritance, and demonstrate the
shortcomings of path-based skeptical approaches.

"1An anecdotal aside: I was particularly surprised to reach this conclusion, myself. I'd been a long-standing

opponent of off-path preemption, but when I'd gotten the principles worked out, I have to admit that I found myself
convinced. I present this as anecdotal evidence that understanding the underlying principles really does help sort out
the "right" intuitions-LAS
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By making various choices on the skeptical/credulous spectrum, and in on- vs. off-path pre-

emption, we can describe many of the existing theories of inheritance. For example, Sandewall's

theory [32] is off-path and credulous; Horty, et al.'s [18] is off-path and ambiguity-blocking. Touret-

zky's original theory [39, 40] is a downwards version of the on-path creduous theory presented in

sections 3-5.
By describing other inheritance theories in the framework presented here, we obtain not merely

soundness and completeness results, but a more profound understanding of the underlying princi-

ples. This allows us to make comparisons based not on ad hoc examples, but on intuitions that

underly them.
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A Proofs of Theorems

The proofs of inheritance theorems are given for the positive cases only (e.g., Xý J> a-+z); the
proofs of the negative cases (e.g., Xr 1> a7

4 z) are similar. Many of these proofs are inductive. The
following two definitions provide the basis for these inductive proofs.

Definition: A node x E Vr is a leaf of r if : has no children in r, i.e., CQOsr(y) = C3 egr(y) = .

Definition: The depth of a node x in a hierarchy r, 6(z, r), is defined recursively:

1. Ifz is a leaf of r, g(z,r) = o.

2. If x is not a leaf of r, 6(x,r) = 1 + max({6(w,r) I wE Qoar(W) U Cegr(:)})

A.1 Credulous Extension Semantics

Theorem 1 (Soundness and Completeness for Credulous Extensions)

Let r be an inheritance hierarchy, with a, : E Vr. Let Xr be a credulous extension of

r w.r.t. a, and let XJ. be the propositional theory corresponding to Xr. The following
are equivalent:

1. xr. 1> a--+ (resp., a-/+,).

2. z is positively a-reachable in Xr (resp., negatively a-reachable).

3. Xr iF (rep., ~i).

4. xr I i (re,,., -i).
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Proof:

1 * 2: By definition, a hierarchy Xr J> a-+z iff z is positively a-reachable in Xr by an
admissible path; but since a credulous extension is unambiguous, every path is
admissible.

2 €* 3: =ý: Assume that z is positively a-reachable in Xr., i.e. (3 s "-- s, ) a - si ...

s,. z E Exr. Then

a A (aiD ) A A(gi D Ai+1) A (i. D i) (1)
1<i<n-I

is a sub-theory of Xr; since a theory validates any subtheory, Xr ý- (1) and its

components. So XZ F- i; Xr i- i D i,, therefore XZ F- i; similarly X S - ' D i,

so Xr.F- i 2; etc. So XF F- i.

=: Assume z is not positively a-reachable in Xr, but Xr F- i. Since Xr F- i,
Xr U {,•} I _L. In particular, Xr U {-i} F- -ia; and by the deduction

theorem, XZ F- - a. This is just ii D £ Since XZ is a conjunction

of clauses of the form 3D (",)" (and the singleton a), Xr I- a D i1 means that

either a = i or there is some conjunct a D il in Xr such that Xr. i- S, D i.
By a similar argument, we can show that either 31 = i or there is some i2
such that 91L D 92 is in Xr and Xr - S2 D i, etc., so that there must be

a chain of conjuncts a D ii, ii D S, ...-, sI D •,, g, D .- in Xr. Since every

conjunct of XZ corresponds to an edge of Exr, this implies a sequence of edges
a. .. -s- z--making z a-reachable in Xr; contradiction.

3 • 4: This follows from the soundness and completeness of propositional logic: a
formula is derivable from a propositional theory iff every model of that theory
entails that formula.

A.2 Soundness and Completeness

The following lemma is used in the proof of several theorems, in this section and elsewhere. It says
that any unambiguous a-connected subhierarchy of r can be extended to make it maximal-i.e., a
credulous extension of r w.r.t. a.

Lemma 2.1 (Extension Construction)
Let r be an inheritance hierarchy, and let {vi z-} be an unambiguous a-connected

subhierarchy of r. Then there is an eztension Xr of r w.r.t. a containing {vi . (-')zi}
(i.e. v- -zlEEr

Further, if {vi.(-,)zi} are all admissible in r w.r.t. a, then there is a preferred eztension
of r o.r.t. a containing {vi " zi}.

Proof: Construct X -'= Eztend({ vi. ,i},ia) as follows:
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1. Let {vi. (-)Z,} E Exr.

2. For each node z, in topological order, add the edge v- (-,)z E Er" to Exr if

(a) v is positively a-reachable in Eztend({vi. -z},r,a) (as constructed so far),
(b) v. (-,)x is admissible in r w.r.t. a, and
(c) adding v. (--)z won't make Eztend({vi. zi},r,a) (as constructed so far) am-

biguous.

By construction, Xr -= Eztend({vj. (-i)z,},ra) is a credulous extension of r w.r.t.
a: it is unambiguous and a-connected, and any edge that could be added without
contradicting one of these two properties has been.

Further, if every edge in {v, . (-,)zi} is admissible in r w.r.t. a, we claim that Xr -

Eztend({vi -zi}, ]a) is a preferred credulous extension of r w.r.t. a.

Let Y •. X: be a credulous extension of r w.r.t. a. Assume by way of contradiction
that yr - Xr. Then there are some nodes s, t E Vxr such that

1. Xr and Yr agree on all edges whose endpoints topologically precede t in any
topological order,

2. _- - (-,)t is inadmissible in r w.r.t. a,
3. Xr 1> a -s- s,,...sn- s-(-,It, (,m >_ 0), and

4. Yj fk a .s -.9.. sm .s (-,)t

If s - (-,)t is inadmissible in r w.r.t. a, then either

1. s . (-,)t is in {vi. (-•)zi}. But then it must be admissible, since {vi -(--)zj} is
admissible in r; or

2. it was added during the construction. But then it is admissible in r w.r.t. a, by
condition 2b.

So Xr does not contain an inadmissible edge, and it is is therefore a preferred extension
of r w.r.t. a.

The following lemma says that every edge of a preferred credulous extension of r is admissible in
r.

Lemma 2.2 Let r be an inheritance hierarchy, with a E Vr, and let Xr E
Pref(r, a) be a preferred credulous eztension of r w.r.t. a. Then every edge v. (-,)z in
Xr is admissible in r w.r.t. a.

Proof: Assume that there is an edge in Xr that is inadmissible in r w.r.t. a. There must
be some inadmissible edge, say v .z, for which every edge whose endpoints topologically
precede z is admissible. Since v.z E E-r, there must be some path a~ur..s,.v~z E E:Ga

(a credulous extension of r w.r.t. a is a-connected). Certainly, this path is not admissible
in r w.r.t. a (else v . z would be admissible in r w.r.t. a); but by hypothesis, v -z is
the only inadmissible edge in it (since all other edges topologically precede v -z). So
a. s,.." S.v is admissible in r w.r.t. a. Consider yr = Eztend(XrI.,r,a), where Xr.I
is

{b- (-)q I b. (-')q E Exr and q topologically precedes z in r}
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Certainly Y~r is a credulous extension of r w.r.t. a (by lemma 2.1, since Xr[, is an
unambiguous subhierarchy of r w.r.t. a). Further, yr -<v:

1. Xr and Y r agree on all edges whose endpoints topologically precede z,

2. v . z is inadmissible in r wr.t. a,
3. Xr. 1> a - si ... s,,- v. - , and
4. YIk a.sl...s,.v.z, ad.

But this means that X~r ý Pref(r, a); contradiction!

Theorem 2 (Soundness and Completeness)
Let r be an inheritance hierarchy, with a,x E Vr, and let Pref(r, a)be the set of

preferred eztensions of r w.r.t. a. Then r ý> a-.z iff there is some preferred eztension

xr.E ?ref(r, a) such that xr 1= i (reap., a-:z and i).

Proof:

*: This follows directly from lemma 2.1 and theorem 1, conditions 1 and 4: If r j> a-:z,
then there is an admissible path a-sa. ..-- .z in r. So-by lemma 2.1-Eztend({a.
31,...,Sn •* },I,a) is a preferred credulous extension of r w.r.t. a; call it X~r. By
theorem 1, whenever z is positively a-reachable in X~r, then Xr. = i.

4=: Assume that r lk a-.z, i.e. that there is no admissible path from a to z in r. Then
by lemma 2.2, any credulous extension containing such a path-and hence an
inadmissible edge--cannot be a preferred credulous extension of r w.r.t. a.

A.3 Computing Inheritance

Theorem 3 (Complexity of COMPUTE-SPECIFICITY-EXTENSION)

Constructing Er. is 0(n 5 )

Proof:

We assume that an inheritance hierarchy r = (Vr, Er) is represented as:

Vr is an array[integer] of nodes in topological order
Er is represented by two arrays,

Er+ and Er-, both array[nodexnode] of boolean

COMPUTE-SPECIFICITY-EXTENSION (r, a)
R : array[node xnode] of boolean;
Er, E* : ~raphs with structure equivalent to r
unreachable : array[node] of boolean

For v := Ito IVrI
For z := 1 to IVrl
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Ezr_*[+[,z] false
BEr-[v,z] false
R[v,z] := false

n := TOPSORT-REACHABLE-SUBSET (r, a, ED
Forz := 1tondo

Forv := ltondo
If r+[Vr[1V, Vrf•]]

E.r+[Vf,[v], Vr.r[z]] :=true
If E-[Vr[v], Vr[z]]

En-V•r_ [v], VEr(z-] := true
For t= (v - 1) to a do

If BE.r + [Vm,. [v], Vi: [MI]
Fori := lton

unreachable[i] := false
E* := REMOVE-NEGATIVE-PREEMPTORS (E , =)
If not (POSITIVELY-REACHABLE? (E*, a, v))

Er1+[VEr[], Vr[[z]] :=false
If EMr [•iivi VMjz1)

Fori := Iton
unreachable[il := false

E* := REMOVE-POSITIVE-PREEMPTORS (Er, r, )
If not (POSITIVELY-REACHABLE? (E*, a, r))

Ez~r- [Vzr [vt, Vrfl[l] false
Forp := (z - 1) toado

If E4." I[Vyr [p], V•. [z]]
If REDUNDANT? (<E, a, p, z)

R~p, z] :=true
EM:r+[p,z] :=false

Forp := Itondo
Forz := itondo

Emr+[p,z] := r ,[pz] or R[p,z]

Return Eý

Auxilliary code may be found in figure 14.

The complexity of this algorithm is O(t + n 3 + n2(p + b) + n 2r), where n is the
number of nodes in the hierarchy (IVrj), t is the computational complexity of
a call to TOPS ORT-REACHABLE-SUBSET, p is the complexity of REMOVE-...-
PREEMPTORS, b is the cost of POSITIVELY-REACHABLE?, and r represents the
call to REDUNDANT?.

Examination of the code in figure 14 yields a cost of O(e) •_ 0(n 2 ) for TOPSORT
(and hence for TOPSORT-REACHABLE-SUBSET), where e = jErl _< I VrI2 = n 2; this
is a simiple variant of depth-first search taken from Aho, Hopcroft, and Uihman [3].
POSITIVELY-REACHABLE is similar, using unreachablel as mark[] and potentially
terminating early (before the entire hierarchy has been searched) if the first if term
returns true. Its complexity is also O(e), since it too searches each edge at most once.
POS-REACH-W/O-NEGS? follows POSITIVELY-REACHABLE; the test FOR n:= 1
to (z - 1) is performed at most once per node, the complexity of POS-REACH-W/O-
NEGS? is O(e + n 2 ) or simply 0(n 2 ). REDUNDANT? is therefore 0(n 3 ), calling POS-
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TOPSORT-REACHABLE-SUBSET (ri, , a,.t) REMOVE-NEGATIVE-
Adapted from [3, p. 222]. PREEMPTORS (Erv,z)
For i := 1 to jVr,. Ido E* := (VEr,Ezr)

mark[i] := false For s := I to n
i:= 0 If E•. [Vzr [., VEr [1]*
TOPSORT (a) and not EMrI[ [VMr [S], VEr [a]]
Forj := 1toido Fort := lton

Vr..,[j] := TST[i + 1 - j] If Eýr+[Vrr[8], V Wr[t]]

Return i Em*.+[VV. [s], VE_.[t]] := false
If EE-r -VI Y [s], V. [It]]

TOPSORT (a) EE- -[V r .[], VE- [tJ] false
mark[a] := true EEr+[VM'.iiW, Vvr s]
For z := Ito JVr,. I do Em.+[VE.[t], Vz.[]]s) false

If mark[a] = false then If EEr [Vnr [t], VE.r [8]]

If Er,. tVr,. [a], Vr,. [za] or Er, [Vr,. [al, Vr,. [zjj E.- [Vz. [t], Vz. [s]] false
then TOPSORT (z) Return E*

i+ 1
TST[i] :=a REMOVE-POSITIVE-PREEMPTORS 

is identi-
cal save that line (***) reads

POSITIVELY-REACHABLE? (IE*, b, z)
; assumes an external array unreachable[integer] if +I r+ [s], VM.r [1]4
; of boolean, initialized to false and not ErI Vzr [s], Vzr [z]]

Ifb = z
Return true

Else POS-REACH-W/O-NEGS? (Es, b, v)
If unreachablejb) ; Like POSITIVELY-REACHABLE, backwards,

Return false ; but with the extra constraint that none of the
Else ; intermediate nodes can be negatively a-reachable
Ifb > a Ifb = x

unreachable[b] := true Return true
Return false Else

Else If unreachable[z]
reached := false Return false
Forv := ato (b + 1) Else

If not (reached) If b > a
If Ev, + [V.- [bh, Vn.[w]] unreachable[e] := true

reached := Return false
POSITIVELY-REACHABLE? (E*, v, a) Else

unreachable[v] := not (reached) For n := 1 to (z - 1)
Return reached If E-r- [VMr [n], VEr [1]l

unreachable[z] := true
Return false

REDUNDANT? (Er, b, a) reached := false
Fori := Iton Forv := (z - 1) tob

unreachable[i] := false If not (reached)
For v := (b + 1) to (a - 1) if BE+rIVEr[t]I, VM(ra]]

If POS-REACH-W/O-NEGS? (Er, b, v) reached :=
and POS-REACH-W/O-NEGS? (Er, v, z) POS-REACH-W/O-NEGS? (! r b, v)

Return true unreachable[v] := not (reached)
Return false Return reached

Figure 14: Auxilliary code for COMPUTE-SPECIFICITY-EXTENSION
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REACH-W/O-NEGS? twice (0(2n 2 ) = 0(n 2 )) for each node between b and x. Finally,
REMOVE-...-PREEMPTORS is simply 0(n 2).

The total complexity of COMPUTE-SPECIFICITY-EXTENSION is therefore
0(n 2 + n 3 + n2(n 2 + n2 ) + n2n 3) or 0(n5 ).

Theorem 4 (Correctness of COMPUTE-SPECIFICITY-EXTENSION)
Let r be an inheritance hierarchy, with a E Vr, and let Er. be the specificity eztension

of r w.r.t. a. Then

EEr = {v- (-i)xl"v (-')z admissible in rw.r.t. a}

Proof: The proof proceeds by induction on the length of the longest path from a to v
in r.

Base Case: Consider the case in which the edge a- z E Er is the longest path from a to
z in r. In this case, r 1> a--+z--because a .z is not redundant (else there would be
a longer path from a to x in r) and contains no preempting intermediary-and z
is positively a-reachable in r.--again, z has no a-reachable negative preemptors
in r.

Induction Hypothesis: Assume that for every node z E Vr with the longest path from
a to z in r of length < k, v . (-,)x is admissible in r w.r.t. a iff v- (-,)z E Er..

Induction Step: Consider a node z with the longest path from a to z, a -s, - - s,,- Z,
n = k. Claim: an edge v -z is in Er. iff it is admissible in r w.r.t. a.

•: Let v . z be admissible in r w.r.t. a. Then there is some non-redundant sequence
of admissible edges a • tl • • • t,, v - z E Er containing no preemptors of s, • y.
Further, m < k (since the length of the longest path from a to z is k + 1, and the
length of this path is m + 2). So a- t -... tm- v has length at most k, and by the
induction hypothesis, since it is composed of edges admissible in r', it is entirely
contained in Er. Is v- z in Er.? Assume not. Then it must be the case that if we
REMOVE-NEGATIVE-PREEMPTORS from Er, z is no longer POSITIVELY-
REACHABLE?. But none of a, tl, ...tn, v is a negative preemptor of z, so the path
a- t1 ... t,, v - z remains in E* and so in Er.- Contradiction.

:: Let v • z be in Er. Then by the induction hypothesis, every positive path from
a to v in £r is admissible in r, w.r.t. a (since the length of the longest path
to v is at most k). Certainly, there must be such a path, or v would not be
POSTIVELY-REACHABLE? and v . z would not be added to Er. Further, there
is such a path with no redundant edges and no preemptor of x, since any edge that
is REDUNDANT? is temporarily removed from Er. and we further REMOVE-
NEGATIVE-PREEMPTORS before determining that v remains POSITIVELY-
REACHABLE? (else v . z would not be in r.). So there is an admissible positive
path from a through v to z; and v . z is admissible in r w.r.t. a.
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Corollary 4.1 Let r be an inheritance hierarchy, with a E Vr. Let Pref (F, a)
be the set of preferred credulous eztensions of r w.r.t. a and let Er. be the specificity
eztension of r w.r.t. a. Then X~r E Pref(r, a) iff Xr, is a credulous eztension of E
w.r.t. a.

Proof:

=•: Consider Xj E Pref (r, a), a preferred credulous extension of r w.r.t. a. Claim: Xr.
is a credulous extension of ErI.
Xr is a subhierarchy of Er: By lemma 2.2, every edge of X~r is admissible in r

w.r.t. a. By theorem 4.2, every admissible edge of r w.r.t. a is in EEr; so
EC ~Err.

X~r is unambiguous: This follows directly from the fact that X~r is a credulous
extension of r w.r.t. a

X~r is maximal: Imagine that there is an edge v . z in Er. that is not in X~r.
Certainly, this edge is in r; but Xr is maximal w~r.t. r and a. So adding
v- z would make X. not a-connected (and hence an extension of neither r nor
Err) or ambiguous w.r.t. a (with similar result for Er) or not preferred. By
theorem 4.2, since this edge is in Er, it is admissible in r w.r.t. a. So adding
it to Xr would not prevent Xr from being a preferred credulous extension of
r w.r.t. a. Therefore, no such edge exists.
_rr

: Let Xa be a credulous extension of Er w.r.t. a. Claim: Xr E Pref(r, a).
Er ErCertainly, every edge of X0 6 is in Er, so by theorem 4.2, every edge of X.r is

admissible in r w.r.t. a. By lemma 2.1, X.r must therefore be contained in a
preferred credulous extension of r w.r.t. a; call it Xr. Let v - x be an edge of Xr

Er
that is not an edge of Xa, i.e., v- z E Exr -Exmr. By lemma 2.2, v z is admissible

in r w.r.t. a; by theorem 4.2, this means that it is in Er. Since it is not in Xlr,
ErE

adding it to X!' would make XEr£ ambiguous--but then Xr must be ambiguous-
or not a-connected-but then Xr must not be a-connected. So no such edge can

exist, and Exr - E Mr = 0, i.e. Xr = x!'; and X-r = Xr E 'ref (r, a).

Corollary 4.2 Let r be an inheritance hierarchy, with a E Vr. Let E: be the
specificity eztension of r o.r.t. a. Then r 1> a---z iff z is positively a-reachable in
E.r (reap., a7

4 z and negatively a-reachable).

Proof:

*: If r 1> a-*z, then there is some (non-redundant) sequence of admissible positive
edges a. si --- s, - z in r (containing no preempting intermediary). Since each of
these edges is admissible in r, by theorem 4, each of these edges is in E.; so z is
positively a-reachable in Er.

€=: If Err does not contain a positive path from a to z, then (by theorem 4) there is no
sequence of admissible edges from a to z in r, so r 1, a--+z.
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Corollary 4.3 (Complexity of Credulous Inheritance)
Deciding whether r • a-4z is 0(n') (resp., a-4 a).

Proof: By corollary 4.2, r 1> a-*z iff z is positively a-reachable in Er.. By theorem 3,
finding Er is 0(n'). Determining reachability can be accomplished by depth-first or
breadth-first search, either of which is O(e) < O(n 2) < 0(n-); since the two passes are
independent and sequential, the total complexity is O(nS).

A.4 Labels

The next lemma says that if z is (positively or negatively) a-reachable, then -

Lemma 5.1 Let r be an inheritance hierarchy, with a, z E Vr. Let £(r, a) be the
ATMS labeling of r w.r.t. a, with [zxj,']• E c(r,a). Then

1. IZ1~ (-A1zJI) A (Ij0osr~z)Jj V Pegr(ir)J)
2. E-JIr = (~R•rz) A (P[osr(z)lr V [Gegr(z)Iri).

Proof:

11 00r(] (1~II Ag ^ (ILIioar(z)]ra V j[egr(z)]J4 )
S_ AT I _I

T I T I I
I_ T I. I- I.

T . T T T
T T 1 1 1

T T T T T

Similarly,

1 (v• r(Z)]]r I lI[egr(z)]]r I i 11 II 11 A [h6egr(z)]r) JJ
1I I I_ I 1
I_ _ T T 1..
1. T 1. TT
I T T TT
T 1 1 1 1
T 1 T 1 1
T T i T T
T T T I 1
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Theorem 5 (Correspondence Theorem)
Let r be an inheritance hierarchy, with a, z E Vr. Then there is a correspondence
between the set of credulous eztensions of r w.r.t. a, and the truth-assignments to
the free variables in •he labels of r w.r.t. a, such that the truth-assignment assigns
ix]r = [T] iff the corresponding eztensior supports a--,z (resp., [---r and a-/,z).

Proof:

Let T be the set of all possible truth-assignments to the variable corresponding to the
nodes of Vr. If T E T is a truth-assignment to the variables corresponding to Vr,
and jz]jr is a propositional formula over these variables, then T(IU[r) is the truth-value
assigned to the formula jIjr1 under T in the traditional sense.

Let {Xr} be the set of credulous extensions of r w.r.t. a.

Truth Assignments to Credulous Extensions:

Define o: T -, {Xr} as

I{t Is .(-) Er or t. (-)v Er}
EI(T) = {stEEriT(Jsjr) =T(It r) = [T]}

U{s.-t E Er I T(sJr) = [T] and T([Tr)= [T]}

We claim that 'p(T) is a credulous extension of r w.r.t. a.

1. Certainly, W(T) is a subhierarchy of r.

2. W(T) is unambiguous: By lemma 5.1, the formula [t ]r A [tr. is unsatisfiable:

It r. ^[A]Mr = I[t!r A ((-I t ]r.) A (I[$osr(t)fr V [[negr(t)]r))

- (It jr. A (-i t jr)) A (I[QCor(t)lrJ V IcGegr(t)]r)
= ± A ([�O(1or(t)]r V W[Gegr(t)] )
= _1_

So it cannot be the case, for any s 1 ,s 2 ,t, that both s, • t and S2 • -it are in E,,(T).

3. cp(T) is maximal: Assume by way of contradiction that there is some edge s.(-,)t E
Er - Ep,(T), and (VT(r), Ep(T) U .{s- (-,)t}) is unambiguous and a-connected. Then
either T(isfl) $ [T], or T(It jr.) (resp., T(lt'1r))# [T].

T(Isjr) 5 T: Then s is not positively a-reachable in jp(T), and adding s. (-I)t
would not preserve a-connectedness.

T(Rt]r') (resp., T(-Jr.))$ T: But T(ItJr) is either [T] or [I1-T assigns a
boolean truth-value to every variable corresponding to a node in Vr, and
jtjJr is a propositional formula over these variables. So T(It jr) = [11. But

T(It jr) = (T(IQoar(t)jr) A (~T(Iegr(W)Jr)))
v(T(I4or(t)]r) A T(I16egr(t)lr) A T(t)

= T(Pisoar(t)]r) A ((-T(I[Gegr(t)]r)) V T(i))
= [II
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In particular,

TC([Qosr(t)Ir) = [P]

This means that Vp E ('osr(t), T(V]r) = [1]. In particular, T(Isjr) = [±] #
[T], and s is not positively a-reachable in W(T), so adding s - t would not
preserve a-connectedness. By a similar argument, T(M1]'•) # [T] means that
T(ichegr(t)jr) = [11; T([Jsr) = [1] # [T]; s is not positively a-reachable in
p(T); and adding s . -it would not preserve a-connectedness.

Then T(J[alr) = [T] if[ z is positively a-reachable in jp(T), so by theorem 1, T(J]r) =

[T] iff (T) [> a---.

Credulous Extensions to Truth Assignments:

Define ¢: {Xr} -- T as

= T, if Xrl>a-*z
. = I if Xr. a-+z

Then (lp(Xr))(RxzJr) = [T] if" Xr j> a--*z. The proof proceeds by induction on oz,r):

Base Cases: If z is a leaf of r, then either

1. z = a. Then Xr J> a--a. Also, [air = [TI, so (iP(Xr))([zjr) = (O(Xr))([T) =

[T], or

2. z 5 a. Then r vk--a, and lair = [i], so ((X.))(. ((x))([) =
[±].

Induction Hypothesis: Assume that, for all nodes z E Vr with (z, r) < n,

(O(Xr))(J-Izr) = [T] if Xr J> a--z.

Induction Step: Let y E Vxr, 6(y, Xr) = n. Then

(O(xr))(XrlY) = ((tb(Xr))([oro.r(Y)fr) A (~(O(xr))(1(1egr(Y)1r)))

V(( ¢(Xr))(I[0oer(Y)]r) A ((XrA))(10-49r(Y)]r) A (¢(Xr))(g))

Since Vw E 00or(z) U Cnegr(z), 6(w,r) < n, the induction hypothesis applies and
(O(Xr))(•twJ) = [T] iff Xr 1> a--*w. Now, either

1. Xr 1>a--+y. Then y is positively a-reachable in Xr, but not negatively a-
reachable: 3p E 17o0sr(y), Xr 1> a-*p, but Vn E Gegr(y), Xr lk a-en. Then
3p E (osr(y), (O(Xr))(p]r) = [T], but Vn E Olegr(y), (0(Xr))(In1n) =

and (O(Xr))(Jyjr) = [TI
2. Xr [k a---y. Then y is not positively a-reachable in Xr: either y is negatively

a-reachable, or y is not a-reachable at all. In either case, Vp E Oosr(y),
Xr 1a---p, and so (tP(Xr))(j[p]r) = [1]. But then (l(xr))(XyJr ) = [±L as
well.
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Corollary 5.1 Let r be an inheritance hierarchy, with a, z E Vr. Then RxE is
satisfiable iff x is positively a-reachable in r. (resp., JY]r and negatively a-reachable).

Proof: If jx]r is satisfiable, then there is a truth-assignment T to the variables cor-
responding to the nodes of r such that T([[z•r) = [T]. •0('T) is a credulous extension
of r w.r.t. a such that T(ly~r,) = [T] iff o(T) > a--y; so v(T) > a-z. By theorem 1,
this means that z is positively a-reachable in ý'(T), and since ýp(T) is a subhierarchy
of r, x is positively a-reachable in r as well. Conversely, if z is positively a-reachable
in r, then by lemma 2.1, there is an extension Xr of 1 w.r.t, a containing a positive

path from a to z; by theorem 1, Xr 1> a-*+; and O&(Xr) is a valuation of the variables
corresponding to the nodes of r that assigns j[z]r = [T].

Corollary 5.2 Let r be an inheritance hierarchy, with a, z E Vr, and let Er be the

specificity eztension of r w.r.t. a. Then lz]ac is satisfiable iff r 1> a--+z (resp., EX-1,r

and a74z).

,,ErProof: By corollary 5.1, a[z]ca is satisfiable iff x is positively a-reachable in Er. By
corollary 4.2, z is positively a-reachable in Er iff r I> a---z.

A.5 Skeptical Inheritance

Corollary 5.3 Let r be an inheritance hierarchy, with a,: E Vr, and let Er be

the specificity eztension of r w.r.t. a. Then [jxr. is valid (tautological) iff a-+z holds

in every credulous eztension of r w.r.t. a, and [az is valid iff a---z holds in every
preferred credulous eztension of r w.r.t. a (resp., [j]] and negatively a-reachable).

Proof: If jz]• is valid, then every truth-assignment to the variables corresponding to
the nodes of r satisfies jzJ].. In particular, if Xr is a credulous extension of F w.r.t.
a, then O&(Xr) satisfies Jx]:r--P(Xr)(Izx]) = [T]. But by theorem 5, tb(X[) assigns
Ob(Xr.)(Iz]J) = [T] iff Xr 1> a--+z. Since the choice of Xr was arbitrary, this holds for

every credulous extension of r w.r.t. a, and every credulous extension of r' w.r.t. a
supports a-*z.

Conversely, assume that [zJxr is not valid. Then there is some truth-assignment T that
falsifies fzxJr: T(I[z]) = [_I]. Consider the credulous extension p(T); by theorem 5,
jp(T) P, a--*z. So there is some credulous extension of r w.r.t. a that does not support
a---*E.

It follows that ['2.u is valid iff a--+z holds in every credulous extension of E w.r.t, a;
but by corollary 4.1, the credulous extensions of Er w.r.t. a are precisely the preferred
credulous extensions of F w.r.t. a.
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Theorem 6 Any path-based inheritance theory will be either unsound or incomplete

for ideally skeptical inheritance; the intersection of credulous eztensions is not a path-

based notion.

Proof in text

Corollary 6.1 (Complexity of Skeptical Inheritance)
Ideally skeptical inheritance-computing the intersection of preferred credulous

eztensions-is 0(ns).

Proof in text
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